Altitud de Presión

Home  >>  Academia de aviación  >>  Altitud de Presión

Altitud de Presión

On julio 14, 2023, Posted by , in Academia de aviación, tags , , , With Comentarios desactivados en Altitud de Presión

Altitud de Presión

Altitud de presión es la altura sobre el plano de referencia estándar (SDP, standard datum plane). El altímetro del avión es esencialmente un barómetro sensible calibrado para indicar la altitud en la atmósfera estándar. Si el altímetro está configurado para 29,92 “Hg o 1013 mb SDP, la altitud indicada es la altitud de presión, altitud en atmósfera estándar correspondiente a la presión medida.

El SDP es un nivel teórico donde la presión de la atmósfera es 1013 mb o 29,92 “Hg y el peso del aire es de 1,03 Kg/cm2 o 14,7 psi (libras por pulgada cuadrada). Al cambiar la presión atmosférica, el SDP puede estar por debajo, en o sobre el nivel del mar. La altitud de presión es importante para determinar el rendimiento del avión, así como para la asignación de niveles de vuelo para las aeronaves.

La altitud de presión se puede determinar por cualquiera de los tres métodos:
1. Estableciendo la escala barométrica del altímetro a 1013 mb o 29,92 “Hg y leyendo la altitud
indicada, o
2. Aplicando un factor de corrección a la altitud indicada de acuerdo al “ajuste altimétrico”
informado, o
3. Mediante el uso de una computadora de vuelo.

Altitud de Densidad
El término más apropiado para correlacionar el rendimiento aerodinámico en la atmósfera no estándar es la altitud de densidad, altitud en la atmósfera estándar correspondiente a un valor particular de la densidad del aire.

La altitud de densidad es la altitud de presión corregida por temperatura no estándar. Al incrementarse la densidad del aire (menor altitud de densidad), la performance de la aeronave aumenta. A la inversa, al disminuir la densidad del aire (mayor altitud de densidad), disminuye el rendimiento del avión. Un descenso en la densidad del aire significa una mayor altitud de densidad; un aumento en la densidad del aire significa una menor altitud de densidad. La altitud de densidad se utiliza en el cálculo del rendimiento de las aeronaves. Bajo condiciones atmosféricas estándar, el aire en cada nivel de la atmósfera tiene una densidad específica; bajo condiciones estándar, la altitud de presión y la altitud de densidad indican el mismo nivel.

La altitud de densidad, entonces, es la distancia vertical sobre el nivel del mar en la atmósfera estándar a la que se encuentra una determinada densidad.

El cálculo de la altitud de densidad implica considerar la presión (altitud de presión) y la temperatura. Dado que los datos de rendimiento de las aeronaves a cualquier nivel se basa en la densidad del aire en condiciones de un día estándar, tales datos de performance se aplican a niveles de densidad del aire que pueden no ser idénticos a las indicaciones del altímetro. Bajo condiciones por encima debajo del estándar, estos niveles no pueden ser determinados directamente del altímetro.

La altitud de densidad se determina encontrando primero la altitud de presión, y corrigiendo luego esta altitud por variaciones de temperatura no estándar.

Dado que la densidad varía directamente con la presión, e inversamente con la temperatura, una altitud de presión dada puede existir para un amplio rango de temperatura, permitiendo variar a la densidad. Sin embargo, una densidad conocida se produce para cualquier temperatura y altitud de presión. La densidad del aire, por supuesto, tiene un efecto pronunciado sobre el rendimiento de la aeronave y del motor.

Independientemente de la altura real a la que está operando la aeronave, se comportará como si estuviera operando a una altitud igual a la altitud de densidad existente.

Por ejemplo, cuando se ajusta en 29,92 “Hg, el altímetro puede indicar una altitud de presión de 5.000 pies. De acuerdo con el AFM/POH, la carrera de despegue puede requerir una distancia de 240 metros en condiciones de temperatura estándar.

Sin embargo, si la temperatura está 20 °C por sobre el estándar, la expansión del aire aumenta el nivel de densidad. Utilizando los datos de corrección de temperatura a partir de tablas o gráficos, o derivando la altitud de densidad con una computadora, se puede encontrar que el nivel de densidad es superior a 7.000 pies, y la carrera puede estar cercana a los 300 metros.

La densidad del aire se ve afectada por cambios en la altitud, temperatura, y humedad. Una gran altitud de densidad se refiere un aire fino mientras baja altitud de densidad se refiere a aire denso. Las condiciones que dan lugar a una gran altitud de densidad son elevaciones altas, bajas presiones atmosféricas, temperaturas altas, humedad alta, o alguna combinación de estos factores. Elevaciones más bajas, presión atmosférica alta, bajas temperaturas y baja humedad son más indicativas de una baja altitud densidad.

Usando un computador de vuelo, la altitud de densidad se puede calcular ingresando la altitud de presión y temperatura del aire exterior al nivel de vuelo. La altitud de la densidad también puede ser determinada usando la tabla y el gráfico en las siguientes figuras.

Efectos de la presión sobre la densidad
Puesto que el aire es un gas, se puede comprimir o expandir. Cuando el aire se comprime, una mayor cantidad de aire puede ocupar un volumen dado. A la inversa, cuando la presión en un volumen dado de aire se disminuye, el aire se expande y ocupa un mayor espacio. Es decir, la columna de aire original a una presión más baja contiene una masa más pequeña de aire. En otras palabras, la densidad disminuye. De hecho, la densidad es y directamente proporcional a la presión. Si se duplica la presión, la densidad se duplica, y si se baja la presión, también baja la densidad. Esta afirmación es verdadera solamente a una temperatura constante.

Efectos de la temperatura sobre la densidad
Incrementar la temperatura de una sustancia disminuye su densidad. A la inversa, disminuir la temperatura aumenta la densidad. Por lo tanto, la densidad del aire varía inversamente con la temperatura. Esta afirmación es verdadera solamente a presión constante.

En la atmósfera, tanto la temperatura como la presión disminuyen con la altitud, y tienen efectos contradictorios sobre la densidad. Sin embargo, la relativamente rápida caída de la presión al aumentar la altura por lo general tiene el efecto dominante. Por lo tanto, los pilotos pueden esperar un descenso de la densidad con la altitud.


Efectos de la humedad sobre la densidad
Los párrafos anteriores se basan en la suposición de aire perfectamente seco. En realidad, nunca es totalmente seco. La pequeña cantidad de vapor de agua en suspensión en la atmósfera puede ser insignificante en ciertas condiciones, pero en otras condiciones la humedad puede llegar a ser un factor importante en el rendimiento de una aeronave. El vapor de agua es más liviano que el aire y, en consecuencia, el aire húmedo es más liviano que el aire seco. Por lo tanto, al incrementarse el contenido de agua, el aire se hace menos denso, aumentando la altitud de densidad y disminuyendo el rendimiento. Es más liviano o menos denso cuando, para unas condiciones dadas, contiene la cantidad máxima de vapor de agua.

La humedad, también llamada humedad relativa, se refiere a la cantidad de vapor de agua contenido en la atmósfera, y se expresa como un porcentaje de la máxima cantidad de vapor de agua que puede contener el aire. Esta cantidad varía con la temperatura; el aire caliente puede contener más vapor de agua, mientras que el aire frío puede contener menos. El aire perfectamente seco que no contiene vapor de agua tiene una humedad relativa de cero por ciento, mientras que el aire saturado que no puede retener más vapor de agua tiene una humedad relativa del 100 por ciento. La humedad por si sola generalmente no se considera un factor esencial en el cálculo de la altitud de densidad y performance de la aeronave; sin embargo, contribuye.

Cuanto mayor sea la temperatura, el aire puede contener mayor cantidad de vapor de agua. Al comparar dos masas de aire separadas, la primera cálida y húmeda (ambas cualidades hacen el aire más liviano) y la segunda fría y seca (ambas cualidades lo hacen más pesado), la primera debe ser menos densa que la segunda. La presión, temperatura, y humedad tienen una gran influencia en el rendimiento del avión debido a su efecto sobre la densidad. No hay una regla o un gráfico usado para calcular los efectos de la humedad sobre la altitud de densidad, pero debe ser tenida en cuenta. Espere una disminución en el rendimiento general en condiciones de alta humedad.

Bibliografía.

U.S. Department of Transportation

Federal Aviation Administration

Comments are closed.
Translate »