Performance del avión.

Home  >>  Academia de aviación  >>  Performance del avión.

Performance del avión.

On agosto 5, 2023, Posted by , in Academia de aviación, tags , , , With Comentarios desactivados en Performance del avión.

Performance del avión.

Performance del avión, o rendimiento del avión, es un término usado para describir la capacidad de una aeronave para lograr ciertas cosas que la hacen útil para ciertos propósitos.

Por ejemplo, la capacidad de una aeronave para aterrizar y despegar en una distancia muy corta es un factor importante para el piloto que opera en pistas de aterrizaje cortas, sin preparar. La capacidad de llevar cargas pesadas, volar a grandes alturas a altas velocidades, o viajar largas distancias es esencial para los operadores de líneas aéreas y aviones de tipo ejecutivo.

Los factores principales más afectados por la performance son la distancia de despegue y aterrizaje, velocidad de ascenso, techo, carga útil, alcance, velocidad, maniobrabilidad, estabilidad y economía de combustible. Algunos de estos factores son a menudo directamente opuestos: por ejemplo, alta velocidad versus corta distancia de aterrizaje, largo alcance contra gran carga útil, y alta tasa de ascenso contra economía de combustible. Es la preeminencia de uno o más de estos factores lo que dicta las diferencias entre las aeronaves y explica el alto grado de especialización que se encuentra en los aviones modernos.

Los diversos ítems del rendimiento de una aeronave resultan de la combinación de características de la aeronave y motor. Las características aerodinámicas de la aeronave generalmente definen los requerimientos de potencia y empuje en diversas condiciones de vuelo, mientras que las características del grupo motopropulsor generalmente definen la potencia y empuje disponible en diversas condiciones de vuelo. La adaptación de la configuración aerodinámica con el motor lo realiza el fabricante para proporcionar el máximo rendimiento a la condición de diseño específica (por ejemplo, alcance, autonomía, y ascenso).

Vuelo Recto y Nivelado
Todos los componentes principales de la performance de vuelo implican condiciones de vuelo estable y en equilibrio. Para que el avión permanezca en vuelo estable, y nivelado, se debe obtener un equilibrio igualando la sustentación con el peso de la aeronave y el empuje del motor con la resistencia de la aeronave.

Por lo tanto, la resistencia define el empuje necesario para mantener un vuelo estable y nivelado.

Como se presentó en los artículos de Aerodinámica del vuelo, todas las partes de un avión contribuyen a la resistencia, ya sea inducida (por las superficies de sustentación) o resistencia parásita.

Mientras que la resistencia parásita predomina a alta velocidad, la resistencia inducida predomina a baja velocidad.

Por ejemplo, si una aeronave en condiciones de vuelo recto a 100 nudos luego se acelera a 200 nudos, la resistencia parásita se hace cuatro veces mayor, pero la potencia necesaria para superar esa resistencia es ocho veces el valor original.

A la inversa, cuando la aeronave se opera en vuelo recto y nivelado a dos veces la velocidad, la resistencia inducida es de un cuarto del valor original, y la potencia necesaria para superar la resistencia es sólo la mitad del valor original.

Cuando una aeronave está en vuelo recto y nivelado, debe prevalecer una condición de equilibrio. La condición de vuelo no acelerado se logra con la aeronave compensada para que la sustentación iguale al peso y el empuje del motor iguale la resistencia de la aeronave.

La velocidad máxima de vuelo nivelado de la aeronave se obtiene cuando la potencia o empuje requerido es igual a la máxima potencia o empuje disponible por el grupo motor.

La velocidad mínima de vuelo nivelado no se define generalmente por el requerimiento de empuje o potencia ya que generalmente predominan las condiciones de pérdida o problemas de estabilidad y control.

Performance de ascenso
El rendimiento de ascenso es resultado del uso de la energía potencial de los aviones provista por uno, o una combinación de dos factores. El primero es el uso del exceso de potencia por encima de la necesaria para el vuelo nivelado. Un avión equipado con un motor capaz de 200 caballos de fuerza (a una altitud dada), pero que usa 130 HP para mantener el vuelo nivelado (a una velocidad dada) tiene 70 HP en exceso disponibles para el ascenso. Un segundo factor es que la aeronave puede intercambiar su energía cinética y aumentar su energía potencial reduciendo de su velocidad. La reducción de la velocidad aumenta la energía potencial de la aeronave haciendo entonces ascender la aeronave.

Ambos términos, potencia y empuje se utilizan a menudo en el rendimiento del avión sin embargo, no deben ser confundidos.

Aunque los términos “potencia” y “empuje” a veces se utilizan indistintamente, implicando erróneamente que son sinónimos, es importante distinguir entre los dos cuando se habla de la performance de ascenso. El trabajo es el producto de una fuerza que se mueve a través de una distancia y es generalmente independiente del tiempo. El trabajo se mide por varios estándares, la
unidad más común se llama kilográmetro. Si una masa de un kilo se levanta un metro, se ha realizado una unidad de trabajo de un kilográmetro. La unidad común de potencia mecánica es el caballo de fuerza; un HP (HorsePower) es el trabajo equivalente a levantar 76 kilos a una distancia vertical de un metro en un segundo. El término potencia implica ritmo de trabajo o unidades de trabajo por unidad de tiempo, y como tal es función de la velocidad a la que se desarrolla la fuerza.

El empuje, también una función de trabajo, significa la fuerza que impone un cambio en la velocidad de una masa. Esta fuerza se mide en kilos pero no tiene ningún elemento de tiempo o ritmo. Se puede decir entonces, que durante un ascenso constante, la velocidad de ascenso es función del empuje en exceso.

Esta relación significa que, para un peso dado de un avión, el ángulo de ascenso depende de la diferencia entre empuje y resistencia, o el exceso de potencia.


Por supuesto, cuando el exceso de empuje es cero, la inclinación de la trayectoria de vuelo es cero, y la aeronave se encuentra en vuelo nivelado.

Cuando el empuje es mayor que la resistencia, el exceso de empuje permite un ángulo de ascenso dependiendo del valor del exceso de empuje. Por otra parte, cuando el empuje es menor que la resistencia, la deficiencia de empuje permite un ángulo de descenso.

El interés más inmediato en la performance del ángulo de ascenso implica el franqueamiento de obstáculos. El propósito más obvio para las cuales podría ser usada es para evitar los obstáculos al despegar de aeródromos cortos o confinados.

El máximo ángulo de ascenso ocurre donde existe la mayor diferencia entre empuje disponible y empuje necesario; es decir, para el avión de propulsión a hélice, el máximo exceso de empuje y ángulo de ascenso se producirá a cierta velocidad por encima de la velocidad de pérdida. Por lo tanto, si es necesario salvar un obstáculo después del despegue, el avión a hélice alcanzará el máximo ángulo de ascenso a una velocidad cercana a, si no la misma, velocidad de despegue.

De mayor interés en la performance de ascenso son los factores que afectan la tasa de ascenso. La velocidad vertical de una aeronave depende de la velocidad y la pendiente de la trayectoria de vuelo. De hecho, la velocidad de ascenso es la componente vertical de la velocidad de la trayectoria de vuelo.

Para la velocidad de ascenso, la velocidad máxima ocurrirá donde exista la mayor diferencia entre la potencia disponible y la potencia requerida.

La relación anterior significa que, para un peso dado de una aeronave, la velocidad de ascenso depende de la diferencia entre la potencia disponible y la potencia requerida, o el exceso de potencia. Por supuesto, cuando el exceso de potencia es cero, la velocidad de ascenso es cero y el avión está en vuelo nivelado.

Cuando la potencia disponible es mayor que la potencia requerida, el exceso de potencia permitirá una velocidad de ascenso específica a la magnitud del exceso de potencia.

Durante un ascenso constante, la velocidad de ascenso dependerá de exceso de potencia, mientras que el ángulo de ascenso es función del exceso de empuje.

El desempeño en el ascenso de una aeronave se ve afectado por ciertas variables. Las condiciones del máximo ángulo de ascenso o la máxima velocidad de ascenso se producen a velocidades específicas, y las variaciones de velocidad producen variaciones en la performance de ascenso. Hay margen suficiente en la mayoría de las aeronaves por lo que pequeñas variaciones de la velocidad óptima no producen grandes cambios en la performance de ascenso, y ciertas consideraciones operacionales pueden requerir velocidades ligeramente diferentes de la óptima. Por supuesto, la performance de ascenso será más crítica con gran peso bruto, a gran altura, en zonas de despegue con obstáculos, o durante el mal funcionamiento del motor. Entonces, son necesarias las velocidades óptimas de ascenso.

El peso tiene un efecto muy marcado sobre el rendimiento del avión. Si se añade peso a una aeronave, debe volar a un mayor ángulo de ataque (AOA) para mantener una altura y velocidad dada. Esto aumenta la resistencia inducida de las alas, así como la resistencia parásita de la aeronave. Mayor resistencia significa que se necesita empuje adicional para superarla, que a su vez significa que hay disponible un menor empuje de reserva para el ascenso. Los diseñadores de aviones hacen gran esfuerzo para reducir el peso al mínimo, ya que tiene un muy efecto marcado sobre los factores relacionados con el rendimiento.

Un cambio en el peso de un avión produce un doble efecto en la performance de ascenso. Primero, un cambio en el peso cambia la resistencia y la potencia requerida. Esto altera la potencia disponible de reserva, lo que a su vez, afecta tanto el ángulo de ascenso como la velocidad de ascenso. Segundo, un aumento de peso reduce la máxima velocidad de ascenso, pero la aeronave debe operar a una velocidad de ascenso mayor para alcanzar una máxima velocidad de ascenso menor.

Un aumento de la altitud también aumentará la potencia requerida y disminuirá la potencia disponible. Por lo tanto, la performance de ascenso de un avión disminuye con la altitud. Las velocidades para máxima tasa de ascenso, máximo ángulo de ascenso, y velocidades máxima y mínima de vuelo nivelado varían con la altitud. Al incrementar la altitud, estas diferentes velocidades finalmente convergen en el techo absoluto de la aeronave. En el techo absoluto, no hay exceso de potencia y sólo una velocidad permitirá el vuelo estable, nivelado. Por consiguiente, el techo absoluto de una aeronave produce velocidad de ascenso cero. El techo de servicio es la altitud a la cual la aeronave no es capaz de ascender a una velocidad mayor que 100 pies por minuto (fpm). Por lo general, estos puntos de referencia de performance específicos se proporcionan para una configuración de diseño específico.


Al discutir el rendimiento, con frecuencia es conveniente utilizar los términos relación de potencia, carga alar, carga de pala, y carga de disco. La relación de potencia se expresa en kilos (o libras) por caballo de fuerza y se obtiene dividiendo el peso total de la aeronave por la potencia nominal del motor. Es un factor importante en las capacidades de despegue y ascenso de un avión. La carga alar se expresa en kilos por metro cuadrado (o libras por pie cuadrado) y se obtiene dividiendo el peso total de un avión por el área de ala (incluyendo alerones). Es la carga alar la que determina la velocidad de aterrizaje. La carga de pala se expresa en libras por pie cuadrado y se obtiene dividiendo el peso total de un helicóptero por el área de las palas del rotor. La carga de pala no se debe confundir con la carga de disco, que es el peso total de un helicóptero dividido por el área del disco barrido por las palas del rotor.

Bibliografía.

U.S. Department of Transportation

Federal Aviation Administration

Comments are closed.
Translate »